Cyberinfrastructure “consists of computing systems, data storage systems, advanced instruments and data repositories, visualization environments, and people, all linked together by software and high performance networks to improve research productivity and enable breakthroughs not otherwise possible.”\(^1\)

CI is a critical component of Science: Large Facilities (LFs)

Searching for gravitational waves

Understanding ocean and coastal ecosystems

Looking for exoplanets

Studying climate

The National Ecological Observatory Network: Open data to understand how our aquatic and terrestrial ecosystems are changing.
Recognizing the importance of CI in Large Facilities

Manish Parashar (PI and Chair), Rutgers University and OOI
Stuart Anderson, LIGO
Ewa Deelman, USC
Valerio Pascucci, University of Utah
Donald Petravick, LSST
Ellen M. Rathje, NHERI

• Establish a center of excellence (following a model similar to the NSF-funded Center for Trustworthy Scientific Cyberinfrastructure, CTSC) as a resource providing expertise in CI technologies and effective practices related to large-scale facilities as they conceptualize, start up, and operate.

• Foster the creation of a facilities’ CI community and establish mechanisms and resources to enable the community to interact, collaborate, and share.
Develop a model and a plan for a Cyberinfrastructure Center of Excellence

• Dedicated to the enhancement of CI for science
• Platform for knowledge sharing and community building
• Key partner for the establishment and improvement of Large Facilities with advanced CI architecture designs
• Grounded in re-use of dependable CI tools and solutions
• Forum for discussions about CI sustainability and workforce development and training
• Pilot a study for a CI CoE through close engagement with NEON and further engagement with other LFs and large CI projects.
Project Team

USC
Ewa Deelman
Mats Rynge
Karan Vahi Loïc Pottier
Rafael Ferreira da Silva
Ryan Mitchell

Automation, Resource Management, Workflows

RENCI
Anirban Mandal
Ilya Baldin
Laura Christopherson
Erik Scott
Paul Ruth

Resource Management, Networking, Clouds, Social Science

USC Viterbi
School of Engineering
Information Sciences Institute

University of Notre Dame

University of Utah

RENCI

TRUSTED CI
THE NSF CYBERSECURITY CENTER OF EXCELLENCE
University of Notre Dame
Jarek Nabrzyski
Jane Wyngaard
Charles Vardeman

University of Utah
Valerio Pascucci, Rob Ricci, Marina Kogan
Steve Petruzza

Project Team

Workforce development,
Sensors, Semantic technologies

Data management,
visualization,
clouds, large-scale CI
deployment,
Crisis Informatics,
Social Computing

Trusted CI
Susan Sons
Ryan Kiser

Cybersecurity
Advisory Board

- **Stuart Anderson**, Caltech
- **Pete Beckman**, ANL, Northwestern University
- **Tom Gulbransen**, Battelle
- **Bonnie Hurwitz**, University of Arizona
- **Miron Livny**, University of Wisconsin, Madison
- **Ellen Rathje**, University of Texas at Austin
- **Von Welch**, Trusted CI
- **Michael Zentner**, SDSC
1. Recognize the expertise, experience, and mission-focus of Large Facilities
2. Engage with and learn from current LFs CI
3. Build on existing knowledge, tools, community efforts
 - Avoid duplication, seek providing added value,
4. Prototype solutions that can enhance particular LF’s CI
 - Keep a separation between our efforts and the LF’s CI developments
5. Build expertise, not software
6. Work with the LFs and the CI community on a blueprint for the CI CoE

Build partnerships:
- Trusted CI (identity management): share personnel
- Open Science Grid (data and workload management): share expertise
- Campus Research Computing Consortium (CaRCC): workforce development
NEON provides a coordinated national system for monitoring critical ecological and environmental properties at multiple spatial and temporal scales.

...transformative science development...workforce development

20 ecoclimatic domains
- distinct landforms,
- vegetation, climate, and ecosystem dynamics.

Terrestrial sites:
- terrestrial plants, animals, soil, and the atmosphere,

Aquatic sites:
- aquatic organisms, sediment and water chemistry, morphology, and hydrology.

Data collection over 30 years
- 27 Relocatable terrestrial sites
- 13 Relocatable aquatic sites
• Engagement facilitated by NSF

• Engagement Goals:
 • Increase **Pilot's understanding of NEON's cyberinfrastructure** architecture and operations
 • Increase **NEON's understanding of the Pilot's goals** and expertise
 • Select & **scope mutually beneficial opportunities** to prototype or learn from CI methods

• Engagement Process
 • In-person management meeting
 • NEON shared a number of design documents
 • Team conference calls
 • Meeting with NEON
 • November 2018: Identified topics and formed working groups
 • August 2019: took stock, summarized
- Data Life Cycle and Disaster Recovery
- Data Capture
- Data Processing
- Data Storage/Curation/Preservation
- Data Visualization/Dissemination
- Identity management
- Engagement with Large Facilities
Data Life Cycle for LFs

Anirban Mandal, lead

WHAT?

Data Capture

Initial data filtering/processing

Central data processing

Data Archiving and Storage

Data Access/Visualization/Dissemination

WHERE?

some type of sensor or instrument (e.g., GRAPEs, telescope, DOMs)

often at the sensor site, or nearby

main data center

main data center

scientists/public

Different forms of transmission/movement (e.g., plane, satellite, cables), redundant network links...

Data Movement

Disaster Recovery (DR)
Working Groups and Products

Working group	Goals	Products
Data Capture | Develop demonstrators and comparisons of the multiple architectures for data capture at the sensor to data deposition in a repository | **Prototype**: architecture demo on github: https://github.com/cicoe/SensorThingsGost-Balena |
Data Life Cycle & Disaster Recovery | Develop a general set of DR requirements and policies that can inform the LFs about best practices for DR and how those can be adapted for specific facilities. | **Document**: Disaster recovery template
Document: Filled out template example (IceCube)
Webinar: Best Practices for NSF Large Facilities: Data Life Cycle and Disaster Recovery Planning |
Data Processing | Provide support and distill best practices for workflows and services related to the processing of data. | **Paper**: “Exploration of Workflow Management Systems Emerging Features from Users Perspectives” (in submission) |
Data Storage, Curation, & Preservation | Compare and be able to consult on different data storage, curation and preservation technologies. | **Document**: Competency questions based on scenarios that domain experts may use Google dataset search for NEON dataset discovery
Presentation: at ESIP on schema.org
Small containerized prototype of publishing neon vocabularies as linked data and linked data connection |
Working Groups and Products co-lead by the Pilot and NEON

<table>
<thead>
<tr>
<th>Working Group</th>
<th>Goals</th>
<th>Products</th>
</tr>
</thead>
</table>
| Data Visualization & Dissemination | Understand the access, visualization and user interaction workflows in large facilities. Distill best practices and provide solutions to improve the access and usability of the available data. | • **Document** describing AOP data visualization cyberinfrastructure
• **Online demo and video**: Visualizing AOP Data--https://cert-data.neonscience.org/data-products/DP3.30010.001 |
| Identity Management | Understand current practice in authentication and authorization and help mature practice across the NSF Large Facilities. | • **Production deployment**: Connection to CI Logon NEON data download (using existing university / organization credentials) https://cert-data.neonscience.org/home
• **Paper**: NEON IdM Experiences (NSF Cybersecurity Summit) |
| Engagement with Large Facilities | Engage with Large Facilities and other large cyberinfrastructure projects to foster knowledge and effective practice sharing; 2) define avenues of engagement, modes of engagement, and plan community activities. | • **Document**: LF engagement template
• **Presentations**: SCIMMA project meeting, 2019 LF meeting, PEARC’19, LF CI Workshop, Cybersecurity Summit’19
• **Paper**: Invited e-Science 2019 paper |

Contact: Ewa Deelman, deelman@isi.edu
CI CoE Pilot Benefits to NEON Thus Far

- Short ramp-up due to receptivity/readiness to change
- Broadened network of expert CI colleagues
- Major upgrade to Data Portal’s remote sensing visualization
- Accelerated Data Portal completion plan
- Affirmed strategies for workflow, messaging, & DR
- Raised critical mass of attention on semantics & schema.org
- Excited software developers
- Escalated accountability of CI
- More coming

Slide courtesy of Tom Gulbransen, NEON
1. Importance of f2f discussions, building relationships and trust
2. Benefits of formalizing the engagement: expectation, timelines, resources to use
3. Importance of LF priorities and challenges, importance of good timing
4. Organizing work around working groups and work products
5. Be open to learn about what works, don’t fix it (e.g. workflow management)
6. Co-existence of old and new systems, making for a heterogeneous CI landscape
1. Reaching out to other Large Facilities
 • Deep engagement, topical discussions, community building

2. Gathering feedback on the data life cycle abstraction

3. Mapping the data life cycle to CI capabilities and services

4. Discovering opportunities for CI sharing

5. Defining new working groups and discussion topics
 • Broadening the disaster recovery discussion
 • Data archiving and preservation
 • CI workforce enhancement, training
In-person meetings with selected ARF members, with focus on CI aspects
 - Shipboard technical support team (Scripps) and other ARF personnel
 - At community events like the NSF Cybersecurity Summit

Ongoing engagement as part of Trusted CI effort
 - Identity Management (IdM)
 - LF Security team

Invited R2R to provide an overview to CICoE Pilot team during project call in October
 - Understood data management operations undertaken by R2R on behalf of the ARF.
 - Data delivery to R2R from ship cruises: Issues and data arrival windows.
 - Data storage and archiving at various facilities including NOOA NCEI, Amazon.
 - Data QC and data processing activities.
 - Data movement issues.
 - Data dissemination using R2R portal.
• Gained understanding of the data life cycle for ARF CI operations with respect to R2R.

• Learnt the importance of real-time data delivery, processing and QC for robust science.

• Learnt about significant progress made by the ARF on standardization of instruments on-board for uniform data collection, and continued improvement in CI design for newer ships (e.g. RCRV).

• Learnt the critical role of Marine Technicians, including the wide range of their functions and required training; learnt the complexity of ship operations, e.g. ship scheduling.

• Learnt about systematic workforce development activities undertaken by ARF, e.g. MATE program.

• Learnt the unique aspects of CI functions for ARF because the ships are mobile platforms with long cruises operating under harsh environmental conditions.
Difficult operating conditions of the ARF fleet result in some CI Technology Challenges

- **Networking challenges**: more sat. bandwidth desirable but budget constraints; Cloud solutions not feasible.
- **Real-time transmission** for QC and rapid turnaround: not implemented for most vessels.
- **Robust science**: Delayed QC makes it difficult to ensure that the quality of data collected by RVs is adequate and accurate for scientific studies.
- **Diversity of sensors**, some of which might be mitigated in future designs, is still a challenge.
- **Obsolescence**: Computing/storage/network equipment bought years ago might be deployed years later.

The ARF also faces some non-technical/policy/operational CI Challenges

- **CI plan**: There are no/limited definitions for CI best practices for the ARF; No clear data management plan.
- **Need to design/deploy/plan for IT services/CI solutions both on Ship Ops side and Tech Services side**.
- **No dedicated funding stream for CI activities in the NSF solicitation**.
- **ARF is not well positioned to respond to possible future regulatory pushes with respect to CI**.
- **Current organizational structure of ARF prevents effective communication regarding CI across Ship Operators / ARF entities, which might lead to potential duplication of activities.**
How Can CICoE Pilot and ARF Work Together to Address CI Challenges?

- Work together to **develop a CI and data management plan** for the ARF
 - Help to create a **Data Life Cycle (DLC) model** and CI services supporting DLC stages for the ARF by leveraging CICoE’s experience in developing similar DLC models for other LFs.
 - Help ARF articulate CI requirements and planning, which will increase ROI and shared efficiency, and decrease TCO across ship operators. Help identifying commonalities in CI requirements and solutions across ship operators.
 - Help in designing a CI plan that is **cross-departmental, consistent and continuing**.

- CICoE can help **make connections with other LFs** facing similar issues by communicating and potentially helping ARF to leverage CI solutions from other LFs that faced similar pain points, and vice versa.
 - E.g. in data collection: there maybe some lessons learned we can distill to share with other LFs or bring in some experiences from NEON or other LFs/projects/communities (e.g. ESIP, RDA).
How Can CICoE Pilot and ARF Work Together to Address CI Challenges?

• CICoE can provide expertise in specific technical aspects by researching CI best practices and potentially prototyping
 • E.g. Standardization of shipboard instrumentation data collection (schema, frequency, common language and formats) - an overview of the best practices in this area will inform ARF.
 • E.g. Research on approaches for real time data delivery and feedback, including evaluation of data delivery with messaging systems with high-latency communication channels.
 • E.g. Identity Management as part of existing Trusted CI engagement.

• CICoE can help articulating the importance of CI for ARF by providing an external balanced view to stakeholders and funding agencies.

• This is our current understanding and we are open to feedback and other ideas !!!
http://cicoe-pilot.org

ci-coe-pilot@isi.edu

Ewa Deelman deelman@isi.edu
Anirban Mandal anirban@renci.org

• Connecting LF CI workshop, 2019:
 http://facilitiesci.org